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Abstract In this paper, we leverage bi-orthogonal signaling by using

a time slot dependent identification scheme that enables energy efficient

information dissemination, independent of the network topology. The ap-

proach, although motivated by cooperative modulation schemes that re-

quire information to be dispersed to other nodes within a wireless ad hoc

network, can be applied directly to wired networks. As a measure of energy

efficiency in information dissemination, we consider the number of trans-

missions required for broadcast. For the grid topology, we give a tighter

bound than [1] without using our proposed time slot dependent identifica-

tion scheme, and then focus on optimizing an information dissemination

scheme for the grid topology.

Keywords:cooperative communications, energy efficiency, sensor net-

works.

I. I NTRODUCTION

In a cooperative sensing network[2], the primary objec-
tive is to extract the aggregated information from the dis-
tributed sensors. Moreover, there is a strong desire to utilize
techniques that will extend the battery life of the network.

In this paper, we consider cooperative techniques for en-
ergy efficient communication. The wireless ad hoc network
contains a set of nodes distributed in a plane where each
node is assumed to have an omnidirectional antenna. We
consider the commonly used power-attenuation model such
that the power needed to sustain a linkuv is ‖uv‖β , ‖uv‖
is the Euclidean distance betweenu andv, and2 ≤ β ≤ 4
models the attenuation due to various environmental fac-
tors[3], [4], [5].

To measure energy efficiency, Li et al. [6] defined the
power stretch factor∗. The power stretch factor is used to
measure energy efficiency of a subgraph on a per path ba-
sis. In this paper, we want to minimize the total number of
transmissions needed for broadcast, which concerns the en-
tire network (global optimization) rather than a specific path
and so we examine a methodology for minimizing the total
number of transmissions required to disseminate a fixed set
of information†, motivated by the goal of reducing the total
energy utilized per bit in terms of a transmission.

∗This is similar to the length stretch factor, also called the dilation ratio
or spanning ratio.
†We assume these techniques are independent of data fusion methods

which in general may be employed simultaneously with the work in this
paper.

II. PRELIMINARIES

We assume that an external resource such as a satellite
or some other source capable of generating sync tones is
used to synchronize the time-slots of the nodes before data
communication begins. We also assume there is an existing
schedule, so that each node uses a pre-assigned time-slot.

Let V be the set ofN nodes in a planeIR2, representing
N nodes in a network. Each node containsD bits of infor-
mation that it must share with all the others, resulting in all
N nodes containing an identical set ofND bits. Moreover,
let E be the set of valid edges for the defined topology, and
G be a graph where two nodes are connected inG if and
only if the nodes can hear each other when using maximum
transmission power during separate transmissions.

A. Metric

Multicast gossip is all-to-all communication [1]. To min-
imize the number of transmissions in multicast gossip, we
cover all the nodes of the network with the minimum num-
ber of disks, where each disk represent a transmission from
the node located at the center of the disk. Note that, this
problem differs from the minimum disk cover problem be-
cause our cover must follow admissible waves of transmis-
sions, where each wave originates from a source node and
propagates toward all other nodes.

Definition 1(wave-cover number$G) Let τv be the
number of transmissions made by nodev during the mul-
ticast gossip. Then the wave-cover number is$G =∑

v∈V τv.
In the remainder of this paper, we shall consider the con-

strained case where‖uv‖ is fixed.

B. A brief review of NSOC cooperative communication

TheND bits of information to be shared are partitioned
into groups ofblog2 Nc + 1 bits, resulting ind ND

blog2 Nc+1e
groups of bits; zero padding is used for partial groups.
Since allN nodes have the identicalND time ordered bits
in groups, the firstblog2 Nc bits in each group determine
which one of theN nodes will transmit the last bit in that
group. This process is repeated until allND bits have
been forwarded to a satellite via FDMA or some other bi-
orthogonal signaling scheme.
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Consider the generalized form of the optimal receiver
structure for AWGN where the receiver simultaneously cor-
relates based on time slots viewed as depicted in Figure 1,
originally presented in [7] and refined for NSOC in [1].
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Fig. 1. Optimal bi-orthogonal signaling receiver wherer(t) is the received
signal. Fori = 1, 2, . . . , N , each correlation functionfi(t) is such that
transmitted signals(t) multiplied by thefi(t) is 1

NT
for interval(i−1)T

to iT if s(t) = fi(t), elses(t)fi(t) = 0. The matched filters integrate
over periodNT , andy is the hard decision output of the receiver.

Independent of the modulation scheme, we can employ
a higher OSI layer form of bi-orthogonality assuming bipo-
lar signaling‡ as a minimum criteria. We extend this idea
of uniqueness of a node (or time slot) as a form of orthog-
onality to the process of information dissemination. This
idea can also be viewed as pulse position modulation where
the pulse contains a bit of information, or as source coding,
or as an extension of the bi-orthogonality signaling on the
hard decision data.

III. T IME SLOT IDENTIFICATION FOR INFORMATION

DISSEMINATION

Time Slot Identification for Information Dissemination
(TSIID) is an energy efficient form of information dissem-
ination among a set of nodes. TSIID could be used for
energy efficient information dissemination among a set of
wireless nodes prior to forwarding data to a satellite. We as-
sume the nodes are assigned unique identifier numbers from
0 to N − 1. In the following, we useni to denote a node
whose identifier isi. The framing structure contains three
levels: the frames, the block frames and the super frames.
Figure 2 depicts the time ordering and framing for theN
nodes.

A. Frames

The lowest level of the framing structure of TSIID con-
tainsN̂ slots per node. The time slot where a bit is placed

‡Note that our scheme requires bipolar signaling to generate a “valid”
flag to resolve when no information is transmitted in a time slot.
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Fig. 2. Framing structure of Time Slot Identification for Information Dis-
semination

shall resolveblog2 N̂c bits from a single node, where the
actual bit transmitted shall be the(blog2 N̂c + 1)th bit of
the D bits from a node, and̂N is the number of unique
time-slots associated with the network. We call the set of
(blog2 N̂c + 1) bits agroupwhere a single transmitted bit
in a specific time slot provides the equivalent information
of the entire group of bits. Thus, the number of actual bits
transmitted is less than the actual amount of raw bits to be
disseminated among the otherN − 1 nodes. Without loss
of generality, we assumêN = N .

Each node is assigned a time slot within a frame. Each
node hasD bits of information to be shared with “some set
of nodes”; in the worst case, the set contains all other nodes.
As an upper bound, we assume that a bit shall propagate to
all otherN − 1 nodes. Using this upper bound, the total
number of transmissions required to disseminateND bits
will hold for all other cooperative modulation schemes in
[1], including NSOC.

B. Block Frames

Each node partitions theD bits into groups ofblog2 Nc+
1 bits. Thus, each node containsd D

blog2 Nc+1e groups,
where zero padding resolves any partial groups. Since in a
multihop network, a node may need to forward information
from other nodes, and there areN nodes in the network,
we useNd D

blog2 Nc+1e time slots per node. We call this the
block frame. Let B be the number of time slots in a block

frame, thenB = N

⌈
D

blog2 Nc+1

⌉
.

Each block frame shall place theD bits of information
pertaining to each node in sequence according toi (ni’s
assigned identifier), in ascending order. LetDi denote the
D bits of nodeni, then a block frame contains the sequence
D0, D1, . . . , DN−1 for each node.

C. Super Frames

Let Bi denote a block frame for nodeni. Considering
all N nodes, we would haveNB corresponding to all time
slots used to disseminateND bits of information amongN
nodes. TheNB slots forms asuper frame. Then, there are
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S = N2

⌈
D

blog2 Nc+1

⌉
time slots in a super frame.

Example 2:Consider Figure 3, where node0 contains
the information bits11010100. Although the number of
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Fig. 3. Node0 transmits to7 other nodes in multihop-hop manner.

time slots need not be restricted to the number of nodes,
we fix the number of time slots to8 in this example. Node
0 partitions the bits into two sets,1101 and0100. A sync
pulse is used to align all node timing. Node0 transmits a1
in time slot6 in the first frame (effectively transferring in-
formation bits1101) and then in the second frame transmits
a 0 in time slot2 (effectively transferring information bits
0100).

Let κD,N =
⌈

D
blog2 Nc+1

⌉
. The gain in reduced number of

transmission from a single node containingD bits of infor-
mation is stated in the following Theorem.

Theorem 3:For a network ofN nodes, where a node
containsD bits of information to be disseminated to the
otherN − 1 nodes, the ratio of reduction in the number of
bits transmitted using TSIID isκD,N

D .
Proof of Theorem 3: For a node intending to dissemi-
nateD bits of information, we have a total of D

blog2 Nc+1

groups, where each groups containsblog2 Nc + 1 bits.
Since D

blog2 Nc+1 may not be an integer, in order to transmit
the last partial group, we round up to the nearest integer.
Dividing this by the total number of bits contained in the
node completes the proof.

Figure 4 shows that the percentage of reduction in the
total amount of improvement asymptotically approaches a
constant for a set of nodes. By removing the ceiling and
floor functions, we can lower bound the percentage reduc-
tion by 1

log2 N+1 which is fixed for any sizeD.

IV. N ETWORK TOPOLOGIES ANDINFORMATION

DISSEMINATION

Our TSIID method works for networks, independent of
the network topology. However, it can be complicated to
obtain a theoretical bound for$G, whereG is of arbitrary
topology. Therefore, we consider three regular topologies
for wireless networks: the line, star and grid. For each
topology, we examine the number of transmissions required
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Fig. 4. Reduction in number of required transmissions perD bits for
various number of nodes in the network.

to propagateD bits of information using TSIID. We assume
that all nodes know the topology of the network.

For nodesni andnj with locationsli andlj respectively,
they may communicate (or are connected) if‖li − lj‖ ≤ d.

A. The line

For a line topology, as depicted in Figure 5, the network
is composed ofN nodes, spaced atd units apart in a straight
line. Assuming each node containsD bits of information to

1 2node 0 N−2 N−1

Fig. 5. A line ofn nodes

be disseminated, we obtain the following theorem.
Theorem 4:ForN nodes spaced an RF distanced apart,

where each node containsD bits of information, the to-
tal number of single bit transmissions required to dissemi-
nate allND bits of information using TSIID isκD,N $line,
where$line = (N2 − 2N + 2).
Proof of Theorem 4: For the outer-most nodes, we have
N − 1 transmissions to propagate a bit of information to
all other nodes. For all other inner nodes, we haveN − 2
transmission to propagate a bit of information.

B. The Star

We assume there exists a central noden0. Nodes are
placed at a distancekd units from the central node, such
that k is the tier and that a node placed on tierk + 1 is
exactlyd units from the node placed on tierk, as shown in
Figure 6.

Lemma 5:Suppose we havek equally spaced nodes per
tier, wherek < 6 (to disable communication among nodes
in the same tier), andm tiers. Then the total number of
transmissions required to disseminateD bits of information
from theN = km+1 nodes isκD,N $star, where$star =
(N2 + (m− 1)N − 2k − k2 + m + 1).
Sketch Proof of Lemma 5:For any broadcast, nodes must
transmit throughn0 to propagate a bit to all other nodes.
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Fig. 6. A multi-tier star configuration,3 tiers5 nodes per tier

Broadcast fromn0 requires1 + k(m − 1) transmissions.
From a node other thann0 and not on themth tier, we have
(m− 1) + [1 + (k− 1)(m− 1)] = km− k + 1. A node on
themth tier requireskm − k + 2 transmissions. Note that
N = km+1, thus$star = 1+k(m−1)+m(km−k+2)+
(m−1)k(km−k+1) = N2+(m−1)N−2k−k2+m+1.

C. The Grid

In [1], the number of transmissions used per node in mul-
ticast gossip is upper bounded byT = N+3

√
N−2

2 . This

impliesTN = N × N+3
√

N−2
2 for multicast gossip for all

N nodes. Here, we present an algorithm that improves the
bound stated above, without using TSIID.

Thek × k grid containsN = k2 nodes (see Figure 7(a).
We normalize the transmission radiusd = 1, so that adja-
cent nodes are placed at distanced apart. Theith node is
designated byni. Node numbering is by row major withn0

at the lower left corner.
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(b)A0 graph for ak×k grid

We defineA0 ⊂ A as the subset of nodes, such that for
any two nodes inA0, there is a unique route. In other words,
A0 is the smallest subgraph that characterizes all possible
shapes of paths in the network. Graphically, fork even in a
k × k grid, Figure 7(b) depicts a typicalA0 subset.

Lemma 6:For ak×k grid, there exists a set of nodesA0

which induces a subgraph containing the minimum num-
ber of unique paths for communication. The total num-
ber of nodes in the set,S(A0) is |S(A0)| = (b

√
N+1
2 c +

1) b
√

N+1
2 c
2 .

Proof of Lemma 6: Note that ak × k grid can be par-
titioned into 4 sets along the diagonals from the corners,
where nodes touching the diagonal lines could be in ei-
ther set. Add a vertical and a horizontal line bisecting the
columns and rows will split the nodes into8 sets. Suppose
we select the upper triangle of the lower quadrant (square)
to beÂ. There arebk+1

2 c rows and columns in the set; so
that the size ofÂ is S(Â) = 1

2 (bk+1
2 c + 1)2. Recognize

that all other nodes in the grid are transpositions and/or re-
flections along the rows and columns, and that setA0 is set
Â, and sinceN = k2, we are done.

We now state some useful notation that we use in the
proof below. Let the indicator functionI(x) be I(x) = 1
for x > 0 andI(x) = 0 for all otherx. Let

G(k) = k + bk
3
c(k − 2) + I(mod3(k + 1)− 1)

+bk − 2
3

c(mod3(k) + 1)I(mod3(k)) . (1)

D. Modulo3 Routing Algorithm (M3RA) on a grid

We present a broadcast algorithm which improved the
local communication of [1].
1. Choose a nodên ∈ A0.
2. If the node isnot in column2, broadcast and choose a
neighbor who is closer to column2. Repeat this until the
selected node is in column2.
3. The node is in column2, broadcast. Select the nodes
above and below to repeat this process until all nodes in
column2 have received and transmitted a broadcast.
4. Select and broadcast for nodes in row2 + 3i, column3,
wherei = 0, · · · , such that2+3i < k. For each row2+3i
selected, increment the column by1 and broadcast. Repeat
this until all columns greater than3 for the specified row
have transmitted to neighbors.
5. If k is not a multiple of 3, then for the columns5+3j <
k, choose roŵi = max{2 + 3i} for all i valid from step4
and broadcast from this set of nodes. For each of these se-
lected nodes, after broadcasting, increment the row to select
the next node. The process is repeated until all rows above
î for the selected nodes have transmitted to neighbors.
A potential extraneous node may exist. Fork = 4 + 3m,
wherem = 0, 1, 2, . . . , select the node in rowk column
k − 1 and broadcast to the final neighbor in upper right
corner.

Theorem 7:For k > 3, the total number of transmis-
sions for multicast gossip in ak × k grid in an error free
environment is bounded by

$grid =

{
N ·G(

√
N) + N

3
2−9N+50

√
N−48

6 , evenk

N ·G(
√

N) + N
3
2−9N+20

√
N−78

6 , oddk

wherek =
√

N and each node initially contains a single bit
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of information. Similarly, for each node containingD bits
of information, we haveD $grid.
Sketch Proof of Theorem 7:Without loss of generality it
is sufficient to choose a nodên from A0. We claim that for
noden̂ in row r and columnc,

T0,c,k = |c− 2|+ bk − 2
3

c(mod3(k) + 1)I(mod3(k))

+k + bk
3
c(k − 2) + I(mod3(k + 1)− 1) .(2)

Recognize that it requires exactly|c−2| transmissions to
reach the second column for any node inA0, which is the
first term on the right hand side of (2). For ak × k grid,
it requiresk transmissions to broadcast from each node in
a single column. Moreover, all adjacent nodes to the spec-
ified column receive the broadcast. Thus, for column2 we
have the third term on the right hand side of (2), wherek
transmissions are required such that the first3 columns of
the grid have received a transmission not including the ini-
tial node.

Since all nodes in the first three columns have received
a transmission, we can choose any node in column3 as a
broadcast point. The algorithm selects a node in the second
row and spaces the next broadcast in column3 spaced3
rows above which is equivalent to grouping complete sets
of 3 rows. Since we need complete sets of3 rows for each
of the transmissions from the third column, we have a total
of bk

3 c sets of3 rows. Recognize that for each set of3 rows
in column3, transmissions required to cover all nodes in a
single set of three rows is1 to begin the process andk − 3
to complete the column. Thus, we have for step4, a total of
bk

3 c(k − 2) transmissions, which is the fourth term on the
right hand side of (2).

Recognize that for step5, the transmission contribution
is highly dependent onk. Specifically, formod3(k) equal
to zero, the broadcast is finished in step 4.

Supposemod3(k) is nonzero. Nodes with columns
greater or equal to5 in the highest valid transmit row are
chosen in groups of3 columns starting from column2 but
not including column2. Thus, we havebk−2

3 c sets of three
complete columns. For each column, we requiremod3(k)+
1 transmissions, resulting in a total ofbk−2

3 c(mod3(k)+1)
transmissions for all complete columns, which is essentially
the second term on the right hand side of (2).

Since, incomplete columns exists for grid sizek = 4 +
3i, for i = 0, 1, . . . , an additional transmission covers the
remaining node in the top right corner of the grid. Thus,
we haveI(mod3(k + 1) − 1), which is the last term on
the right hand side of (2). Rewriting (2) using (1), we have
T0,c,k = |c− 2|+ G(k).

For evenk, recognize that for the entire grid of allk2

nodes, the equivalent are repeated nodes fromA0 with vary-
ing multiplying factors. Specifically, for each node inA0

such that the row is equal to the column, for the entire grid,

each node is repeated4 times. Similarly, all other nodes in
A0 are repeated8 times in the entire grid. Thus, we have

$grid =
k/2∑
c=1



4T0,c,k + 8

k/2∑
r=c+1

T0,c,k





= k2G(k) +
k3 − 9k2 + 50k − 48

6
.

The bound for oddk can be derived similarly.
Let

ZN = N [
√

N + b
√

N

3
c(
√

N − 2)] ,

LN =

{
ZN + N

3
2−9N+50

√
N−48

6 , k even

ZN + N
3
2−9N+20

√
N−78

6 k odd
,

and

UN = ZN + 3Nb
√

N − 2
3

c+ N + LN ,

whereN = k2 andk is an integer.
Corollary 8: ForN nodes in ak×k grid whereN = k2,

the total number of transmissions required to broadcast in
a multicast gossip manner is upper and lower bounded by
UN andLN respectively.
Proof of Corollary 8: Since

G(k) ≥ k + bk
3
c(k − 2) ,

for k even, we have

T (k) = k2G(k) +
k3 − 9k2 + 50k − 48

6

≥ k2(k + bk
3
c(k − 2)) +

k3 − 9k2 + 50k − 48
6

.

Since

G(k) ≤ k + bk
3
c(k − 2) + 3 ∗ bk − 2

3
c

+I(mod3(k + 1)− 1)

≤ k + bk
3
c(k − 2) + 3 ∗ bk − 2

3
c+ 1 ,

for k even, we have

T (k) = k2G(k) +
k3 − 9k2 + 50k − 48

6

≤ k2(k + bk
3
c(k − 2) + 3 ∗ bk − 2

3
c+ 1)

+
k3 − 9k2 + 50k − 48

6
.

Bounds for oddk are derived similarly.
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Theorem 9:[M3RA-TSIID] For a k × k grid with each
node containingD bits of information, using M3RA, the
total number of transmissions for multicast gossip using
TSIID, is TTSIID(D, N) = κD,N $grid.
Proof of Theorem 9: Sinced D

blog2 Nc+1e corresponds to
the total number of bits transmitted from a single node, then
using Theorem 7, where$grid/N is equivalent to the av-
erage number of transmissions from a single node, we have
the effective number of transmissions as

TTSIID(D, N) = Nd D

blog2 Nc+ 1
e$grid/N

= d D

blog2 Nc+ 1
e$grid .

Recognize that

d 1
blog2 Nc+ 1

e >
1

blog2 Nc+ 1

and so we can consider as a lower bound, for theD = 1
case, we have

TTSIID(1, N) >
1

blog2 Nc+ 1
$grid .

Recognize that if each node contained only1 bit to trans-
mit (i.e. Each node hasD = 1), then there is no gain in ap-
plying TSIID. However, there is a clear gain in using TSIID
asD increases.

E. Grid with Lossy Links

We now consider ak× k grid with probabilityp of sym-
bol error on links. In each time slot, the probability of a
received bit being erroneous isp, and the probability of a
received bit being error-free is1 − p. Since each bit trans-
mission could result in up tolog2 N + 1 bit errors (equiva-
lent to a symbol error) at any receiving node, there is a pos-
sibility of a symbol error at up to3 possible receiving nodes
in a grid. Thus, we have the probability of at least one of
three nodes indicating that symbol error has occurred in a
slot of time is3p−3p2 +p3. Thus, we have an upper bound
on the probability of an error occurring in a slot of time for
each hop in a broadcast.

Let T be the random variable representing the total num-
ber of transmission required to multicast-cast gossip among
N nodes. LetK(p) = (1−p)

(1−3p+3p2−p3)2 .
Theorem 10:Using M3RA, the average number of trans-

missions required to multicast gossipD bits over a channel
with symbol error probabilityp is upper and lower bounded
by K(p)DUN andK(p)DLN respectively.

For M3RA-TSIID, the upper and lower bound on
the total number of transmissions isK(p)κD,NUN and
K(p)κD,NLN respectively.
Proof Theorem 10: Without loss of generality, we con-
sider only the upper bound. Using the upper bound on

the number of independent hops from Corollary 8 and
p̂ = 3p − 3p2 + p3, to propagate a symbol of information
amongN − 1 nodes, we have

E[T ] =
UN∑

i=1

∞∑
t=1

tPr{ first error free slott}

≤
UN∑

i=1

∞∑
t=1

tp̂t−1(1− p)

= (1− p)UN
1

(1− p̂)2
.

Replacing3p− 3p2 + p3 for p̂, and since the above result is
for a single symbol from each node, multiply this byD for
D symbols completes the proof.

Note that in Theorem 10,K(p) may be viewed as the
multiplying factor due to errors.

F. Performance Comparisons

We now report the total number of transmissions for the
regular topologies discussed above. In Figure 7, we see the
effect of the TSIID used for a line, a multi-tier star, and a
grid. For the star topology, we use the minimum number
of tiers while maintaining the identical number of nodes
per tier and insuring less than6 equally spaced nodes re-
siding on each tier. We see that the multi-tier star topology
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Fig. 7. Number of transmissions comparison between a line, star, and grid
topology

is at a disadvantage because all routes must pass through
the central node; the grid topology with the M3RA routing
algorithm has the best performance.

A simulation was performed forA0 transmission order-
ing to multicast gossip to all other nodes, considering error-
free transmissions. Figure 8 shows the total number of
transmissions increasing on the order ofO(k2) for the grid.
For verification and comparison, we also plotted the theo-
retical upper and lower bounds (Corollary 8) as well as the
original bound obtained in [1]. The plot confirmed that our
upper bound has improved the previous bound stated in [1].

The original bound (4-3) of [1] is not as tight as the
M3RA upper bound. Although this is an improvement on
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the total number of transmissions required to propagate a
bit of information, further studies are required to tighten
the bound using simpler routing algorithms.

For a link error event, we do not consider the number
of acknowledgments or overhead required in recognizing
an error event. It can be shown that the multiplying factor
is marginal for error rates ofp = 10−5 and below sug-
gesting that the added effect due to a lossy link is minimal
toward the total number of transmissions required to multi-
cast gossip.
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Fig. 9. Upper bound number of transmissions with various number of bit
errors

In Figure 9, negative contributions due to various proba-
bilities of symbol (log2 N +1 bits) errors are factored in (as
in Theorem 10), validating the claim that there is a marginal
negative contribution due to link error events. In Figure 10,
for both error-free and reasonable probability of bit errors
(p < 10−5), the TSIID upper bound of the total number
of transmissions (forD = 100 bits transmitted) provides
significant gain over a scheme not utilizing TSIID. Note
that the energy required to compensate for the symbol error
must be increased synonymous to the work in [1]. How-
ever, schemes such as gray coding the bit sequences should
reduce the effect.
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V. D ISCUSSION

In this paper, we leveraged bi-orthogonal signaling on
the hard decision data for information dissemination by pre-
senting a time slot scheme that reduces the number of trans-
missions from a given node. TSIID could in fact operate in
conjunction with a version of the optimal receiver of Figure
1 although the overall performance as suggested in [1] is
upper bounded by leveraging all orthogonality on the phys-
ical layer implying a trade-off in receiver complexity versus
bit error performance for a given amount of total transmit
energy.

Finally, we presented an algorithm that tightens the
bound on the information dissemination for nodes in a grid.
We recognized that the overall negative effect on the to-
tal number of transmissions in the network of nodes is
marginal for low symbol error rates.
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